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KINEMATIC PRECISION OF GEAR TRAINS
by F. L. Litvin*, R. N. Goldricht, J. J. Coy**, and E. V. Zaretsky'’
National Aeronautics and Space Administration
Lewis Research Center
\ Cleveland, Ohio 44135

ABSTRACT

\’// Kinematic precision is affected by errors which are the result of either ’

-

intentional adjustments or accidental defects in manufacturing and assembly of

gear trains. This paper explains a general method for the determination of

3

kinematic precision of gear trains. The general method is based on the exact

kinematic relations for the contact point motions of the gear tooth surfaces 4

under the influence of errors. An approximate method is also explained.

Example applications of the general and approximate methods are demon-
strated for gear trains consisting of involute (spur and helical) gears,
circular-arc (Wildhaber-Novikov) gears, and spiral-bevel gears. Gear noise ’!

measurements from a helicopter transmission are presented and discussed with

relation to the kinematic precision theory.
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INTRODUCTION
Transmission error is a measure of the kinematic precision of gear trains,
Transmission error is defined as the departure of the meshed gear pair (or en-
tire gear train) from a constant ratio of angular motions as defined by the
ratio of tooth numbers. It is true that in a gear pair each gear has a whole
number of teeth and this defines the nominal ratio of angular positions between

the two. But the instantaneous ratio during a meshing cycle can vary slightly

from the nominal ratio. Transmission error is the measure of instantaneous
variation from the ideal nominal value. The precision of gears was investi-
gated by Litvin [1]*, Litvin and Gutman [2], and Michalec [3].

When the mating teeth in a.gear train have profiles that transmit motion
having no error, they are said to be conjugate pairs. In theory, it is pos-
sible to select an arbitrary shape for a driving tooth and then to find a pro-
file for the driven tooth which will give conjugate action. Involute gear
teeth happen to have the same form for driving and driven member teeth. A
benefit of the involute form is that small errors in center distance between
gears will not produce transmission errors. This is not true for other tooth
profile forms [4, 5].

In general, there are many causes for transmission error, and they cannot
be avoided in practice. Such things as shaft misalignment, profile error,
tooth deflections under load, mounting location errors, and gear support
deflections may combine to cause transmission error., The effects of trans-
mission error are most often harmful. These are high vibration and noise,
pitting and scoring of gear teeth, and reduced reliability of the gear train,

Sometimes it is beneficial to introduce small intentional errors into the gear

*Numbers in square brackets denote references.
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tooth profile to compensate for the probable occurrence of accidental and una-

voidable errors in the assembled and operating gear train. Tip relief to re-
duce dynamic loading and combined mismatch in spiral-bevel gears to feduce mis-
alignment sensitivity are two examples of intentional errors which are bene-
ficial.

Baxter has studied the effect of various types of misalignment on tooth
contact in bevel and hypoid gears [6]. Townsend, Coy, and Hatvani have
examined gear train noise as a test of its precision during an intentional
loss of lubricant destruction test [7].

Of course, the effect of all errors (intentional or otherwise) on
transmission error must be predicted analytically if the gear design process
is to remain rational and not collapse into a confusing heap of empiricism.

Errors of manufacturing and assemblage of gears induce kinematic errors

in gear-drives which may be presented by the following function:
59 ,(9,, 8Q) (1)
Here ¢ is the angle of rotation of the driving gear, 1,

8Q = (aqy, 4Gy, . . .) (2)

is the vector of errors, and

MZ '—'0’(2) ‘@2 (3)

is the kinematic error of the gear drive, represented as the difference between the
theoretical and actual angles of rotation of driven gear 2.
In this paper two methods to determine Function (1) are presented: (a) a

numerical method for computer solution and (b) an approximate geometric solution

which leads to simple, accurate results in an analytical form.
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NOMENCLATURE
shortest distance between gear axes of rotation
eccentricity vector of gear i

i Hy s Hy axial settings of gears (see Fig. 2)
ii Mij angular velocity ratio, gear i, gear j

Ni number of teeth on gear i ‘
| (i) . : : A i

ff vector function representing unit normals of surface of gear i

in fixed coordinate system (f)

dféi) change in unit normal vector due to errors in gear i
i df(]) change in unit normal vector due to point motion relative to
i gear i

dfgl) change in urit normal vector due to transfer point motion with
! gear i
% ég;g absolute velocity of tip of unit normal vector of surface i

ﬁﬁi) similar to dnii) and dgﬁ:) but velocities rather than

. displacements
")

Oi center of rotation of gear i
? O(i) geometrical center of gear i

P pitch point
i Agi vector of errors 4
;, 84, components of vector of errors ' !
% R vector from origin to axis of gear rotation

rb(i) base circle radius of gear i '

réi) vector function representing surface of gear i in fixed

coordinate system (f)




~abs

S

_abs

SR

velocity of contact point

coordinate system i

coordinate system rigidly connected to frame

absolute displacement of contact point of gear i

displacement of contact point due to errors in gear i
displacement of contact point relative to gear i

displacement of contact point in transfer motion with gear i
tangent plane

surface coordinate of gear i surface

similar to ds{}), ds£1), as{?), but velocities

~

rather than displiacements

angular position of eccentricity vector of gear i
initial angular position of eccentricity vector of gear i

rotation vector representing position change of gear axis of
rotation
surface coordinate of gear surface i

change in kinematic error function as measured on shaft of
gear i
proportionality factor

radius vector
surface i
angle of rotation of gear 1

actual angle of rotation of gear 2

theoretical angle of rotation of gear 2
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89, kinematic error function

Y pressure angle

w, angular veiocity of gear i

THEORY AND EXACT SOLUTION METHOD FOR KINEMATIC PRECISION

In the process of motion the tooth surfaces of two gears, 5 and I,

(Fig. 1), are in tangency if the following equations are satisfied:

5§1’<u1.el,¢1) = rgz)(uz.ez,vz)
ntt (up,00,00) = 1t (uy,0500,)

Here rgl) is the position vector of the contact point on gear i: w%') is
the surface unit normal vector at the contact point M; Uss and e, are

the surface coordinates of the gear surfaces; and ?; is the angle of

(5)

rotation of gear i. Subscript f denotes a coordinate system which is rigidly

connected to the frame.
For a gearset with kinematic errors, represented by AQ1 and AQZ, con-

ditions for tangency may be expressed as

Eﬁf)(ul,el,wl,Agl) = 5§2’<u2.e2,¢2,ag2)
nf(:l)(ul,019?19A01) = n.‘(‘:Z)(UZ,eZ)QZ’AQZ)

Equations (6) and (7) yield the functions
¢2(919591’592) = Qg(¢1) + A@z(@laAglsAgz)

U1(91;0919692) H Oi(vl.Agl.AQZ)

(6)

(7)

(9)

ORI 7=
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The functions
r#i)(ui,ei) s ui(vl.AQI.AQZ). 91(91»501,“32) (i =1,2) (10)

represent the path of the contact point on gear surface L, corresponding to the

meshing of gears with errors of manufacturing and assembly. Functions
i 0 .
e (63t 0500p)) 5 o§lep). oSty i = 1.2 (11)

represent the path of the contact point on gear surface xi corresponding to

meshing without errors. Comparison of functions (10) and (11) yields the change

of the contact point path induced by errors.
Consider the solution of equations (4) and (5) and (6) and (7). Vector

equations (4) and (5) yield only five independent scalar equations since

IQ(I)' = |g(2)l = 1. These equations may be presented as

0 .
fj(ulsolo‘Plruziezy‘Pz) =0 (J = 1323'°°35) (12)

It is assumed that

{fl,fz,f3,f4,f5} e ¢l

The symbol C1 denotes that functions fj have continuous partial deriva-
tives of the first order (at least) by all arguments.

It is assumed that equation system (12) is satisfied by a set of para-

meters

pll) . (“{1) ,9{1) "“i” .U§1) ,9§1) ,vél) ) (13)

and that surfaces F} and £, are in tangency at point Mo' Surfaces I

and I, will be in point contact in the neighborhood of Mo if by the set of
(1)

parameters P

the following Jacobian differs from zero:




afl af1 afl afl afl

au; 36; 3u, 38, 3$E
. . . . . $0 (14)
af5 af5 af5 af5 af5

D(fysFp0Fq,Fynfc)
0{u ,0.,Uy00,,0,) =

aul 391 3U2 392 avz

If inequality (14) is satisfied, equation (12) may be solved in the

neighborhood of P(l) with the functions
° 1 15
{0000, (01D, 01050, 00 )owle )} e € (15)

The function ¢g(¢1) represents the ideal law of motion. In most cases
(for conjugate tooth action) function wg(wl) is linear.
Equations (6) and (7) also yield a system of five independent equations in

six unknowns (ul,el,wl,u2,92,¢2)

Qj(ulsel,vl,u2,92,¢2.AQ) =0 (j = 1,2,...,5) (16)

It is assumed that this system is satisfied by a set of parameters

p(2) (2) l2) (1) (2) (2} (2}, (17)

= (ul ’91 sVl 9u2 992 a¢2
with the same value of ¢§1) as in the set P(l). If in the neighborhood of

P(z) the Jacobian

D(91992og3’g4’95) 0 (18)
D(ul ,91,02 992’°—2—y

then system (16) may be solved with the functions

{ul(leQ),e (vl,Ag).u2(¢1.A9),92(w1,A9).¢2(¢1,AQ)} e cl (19)

1

PR

. Py




Function ¢2(¢1,AQ) represents the actual law of motion transformation -

the law of transformation of motion which corresponds to errors of manufac-
turing and assembly. Kinematic errors of the gear drive are represented by

the function
AVZ = ¢2(‘P1,AQ) - ‘93(?1) (20)

This method of solution can provide, not only the kinematic errors of a gear-
set, but also the new path of the contact point (see functions (10)).

In general, the numerical solution of a system of five nonlinear egquations
is a difficult problem which requires many iterations. To save computer time
an effective method of solution was recently proposed by Litvin and Gutman
[2]. The principle of this method follows:

The system of equation (16) may be represented as

F1{u15015915U7,05:955RH1,Hp,8Q) = 0 (21)
f2(U15015015U,,0,,9,5.A,H,Hy,80) = 0 (22)
f3(u1,el,¢l,uz,ez,wz,A,Hl,Hz,Ag) =0 (23)
fa(ul’el’u2’92’°2’A9) =0 (24)
fs(ul,el,uz,ez,vz,Ag) =0 (25)

Equations (21) to (23) are determined from vector equation (6), and
equations (24) to (25) from vector equation (7). Here, A represents the

shortest distance between the axes of rotation of the two gears and Hl and

H, represent the axial settings of the gears (Fig. 2).

=y




Systems Sl(xl,Yl.Zl) and SZ(XZ’YZ'ZZ) shown in figure 2 are rigidly
connected to the driving and driven gears, respectively. Now suppose that some
points Ml(ul,el) and Mz(“2’°2) on surfaces ; and I, are chosen,

With a set of known parameters (“1’91’“2’92)’ equations (24) and (25) become

a system of two equations in two unknowns which may be expressed as

1}
[
—
N
(o]
~—

Filos,9,)

|
(o]
—
(AN
~J
~—

H F2(¢1,¢2) =

Upon solving for ¢, and ¢,, one checks that the following equations are
1 2

satisfied:
A - Kl(ul’el’vl’UZ’QZ’QZ’Ag) =0 (28)
Hl - KZ(UI’GI’QI’UZ’QZ’¢Z’A9) =0 (29)
(30)

HZ - K3(U1,91,¢1,U2,92,¢2,A9) =0

where A, Hl' H2, and AQ are given values.
In general, the solution of the above two systems of equations ((26) and
(27) and (28) and (30)) requires an iterative procedure. In practice, one of
the four variable parameters (ul’el’“2‘92) is fixed, and the other
three are changed such that the two equation systems are satisfied.
The advantage of the above method lies in the ability to divide the system
; of five equations ((25) to (30)) into two Subsystems of two and three
equations, and to solve them separately.
This method was applied to investigate the sensitivity of Wildhaber~
Novikov gears to errors of center distance mounting [1]. These gears are

generated by two rack cutters which have normal sections as shown in Fig. 3.

10
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Surfaces of the rack cutters are in tangency along a straight line M - M
which i1s parallel to axis Za and passes through point M of the normal
section. In the normal section, the shape of each rack cutter is a circular
arc of radius P (i = I, II). The location of point M 1is defined by the
parameter o = o (Fig. 3). The line M - M' generates a helix on the gear
tooth surface which is the path of contact points. Although the procedure
described above is primarily for numerical solution, in this case analytical
results were obtained.

The investigation showed that the error of center distance aA resultea
in the change of location of the contact point path. The new location of the

path is represented by the equation

AR - bII

sin e = —_—
°1 7 P11

R1 =‘/ (°I sin e + rl)2 + (oI cos @ sin Aiz (31)
Where R1 is the radius of gear 1 cylinder on which lies the helix of the
new contact point path. Parameters o, PIs P[p» and bII are shown in
Fig. 3; r is the pitch cylinder radius.

With aA = 0,
b
sin 9 = _ I (32)
°11 T P1

where ° is the parameter corresponding to the desired location of the

contact point path.

11

i

_——— -




KINEMATIC RELATIONS BETWEEN PARAMETERS OF CONTACT POINT MOTIONS

The following relations are the basis of the second method for the

determination of kinematic errors in gear trains. As stated above, the i

tangency of gear tooth surfaces is represented by equations (4) and (5).

Because of the continuity of tangency of these surfaces, it is required that

i diinea fn

. . 2 ."
i rgl)(ul,el,vl) = rg )(u2‘°2"2) (33) '
| -~ -~ |
3 !
' nt (uep0015) = 1) (uy00500,) (34) |
' Here ;ﬁi) (i = 1,2) is the velocity of the surface contact point in abso-

~

lute motion (with respect to the frame); n$1) is the velocity of the tip of

the surface unit normal in absolute motion (also with respect to the frame).

(1) (i) (i) .. o(d) g
s abg aNd Ng " as Nyq.

The velocity of absolute motion may be represented as the sum of two

Henceforth, is designated as v

o g oA S

components: (a) the velocity of transfer motion (together with the surface)

and (b) the velocity of relative motion (with respect to the surface). P

Consequently,
=i et Bl e (35)
‘(1 (1 ‘(1 “(2 (2 ‘(2
ad) = all e all), al ) v nl®) (36)

For a surface represented by a vector-function

F (e (121,2) (37)

-~
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and a surface unit normal

()

-~

(U‘,O_.,Q]) (] = 1s2) (38)

the following comes from definitions (a) and (b) above:

art1) gy arl i au, arl?) o,
(i) = s (1) =~ =~
Yir = 3 a Yo o= au; dt ! 20, dt (39)
an(i) dwi an(i) dui an(i) dei
(i) _ _~ (i) _ _~ =~
Mty = % ; T o= au; T’ 30 dat (40)

Transfer velocity may also be determined in a kinematical way by supposing
that a gear with surface z; rotates about an axis that does not pass

through the origin Oi of coordinate system Sf, which is rigidly connected

to the frame. Vector w(1) is the vector of angular velocity of the gear's

rotation. Then,

vgi) = m(i) X r(i) + R(i) X w(i) (41)

~ ~ ~

where r(‘) is the position vector drawn from origin 0i to the contact

point on the tooth surface and R(‘) is a vector drawn from Oi to an ar-

bitrary point on the gear's axis of rotation.

The transfer velocity Ny is represented by the equation

Aéj) = o) i) (42)

~ ~

Equations (33) to (36) yield the following kinematic relations for two
tooth surfaces which are in continuous tangency:

fél) . fr(l) . féf) . vr(IZ) (43)

13
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A1) (1) 2(2) o p(2) (44)

Equations (43) and (44) were first proposed by Litvin [1], On the basis of
these equations, important problems in the theory of gearing were solvea, such
as avoiding tooth undercutting, deriving the relations between curvatures of
two gear tooth surfaces in mesh, and determining the kinematic errors of gear

drives which are caused by errors of manufacturing and assembly.

APPROXIMATE METHOD OF CALCULATION OF GEAR DRIVE KINEMATIC ERRORS

As a general rule, kinematic errors of a gear drive determined by the
exact method must be obtained in a numerical way using a computer. This is a
disadvantage of the exact method. Therefore, an approximate method with the
opportunity to obtain accurate results analytically is now presented.

Figure 4 shows two gear surfaces £; and I, which are not in tangen-

2)

cy due to errors of manufacturing and assembly. Points M(l) and M( do not
g

(1) (2)

coincide, position vectors re and re are not equal, and surface unit

~

normal vectors ngl) and néz) do not coincide. To bring the two surfaces
into contact it is sufficient to hold one gear fixed and rotate the other gear
by an additional small angle. Since the gear with surface 2y is the ariv-

ing gear, it is preferable to fix the position of surface £, and rotate
surface b9, to bring it back into contact with L. The additional

angle of rotation ae, represents the change of the theoretical angle of

rotation ”3 which is exerted by errors of the manufacturing of manufacturing
and assembly. The b, is as yet an unknown function of the vector of errors

aQ and varies in the process of motion. Thus

Mz = f(019A9) (45)
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The determination of the Function (45) is based on the following kinematic

relations, which are analogous to (43) and (44):

- st o asll) s (1) as(2)  g5(20e o2 (46)
anfye anll) w angt) — anf?) + anf®) + onc?) (a1)

~

where ds(i) is the displacement of contact point and dng‘) (v = 1,2) is

~ ~

the change in direction of the surface unit normal due to errors of manufac-
turing and assembly. To bring the surfaces into contact, it is sufficient

to rotate only gear 2, holding gear 1 at rest. Therefore, ds£i), and dngi)
are zero, and N

oyt o ast) asfE) w05 asl?) (48)
dgil) + dfél) = dnéi) + dn(z) + dnéz) (49)

2)

To determine relations between ds(‘), ds(l), and dsé take the follow-

~tr’ g
ing scalar products:

e tas e asg) gt as o) (50)

Since vectors ds(l) and ds(z) must lie the common tangent plane T, equation

(50) is reduced to the following:

dsii) -n. (astd) _ gs(2)y (51)

n- -q q

The vector dséi) may be represented by the following cross product:

T

15
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MONINCINNC (52)

where dw(z) is the incremental angle of rotation of gear 2 and réM) is the
position vector drawn from an arbitrary point of the axis of rotation to the
contact point M,
Equations (51) and (52) yield
(2) (M) | 1gell) _ 4e(@)
[dv el I e I B (53)

—~ ~

Equation (53) is the basic equation for the determination of kinematic errors
of gear drives. Its application will be demonstrated in the following sections.
Analogous scalar products can be composed on the basis of equation (49).

It can be proven that these scalar products are zero because the vectors in
equation (49) all belong to the tangent plane. Hereinafter, the following

notations will apply:

(1) 4sl), 1aql?) + usl®) (54)

qui s

where 2Aqgl) and qu§2)represent the sum of linear-error vectors due to
manufacture and assembly of gears 1 and 2, respectively.

In many cases, however, errors in gear trains do not result from linear
displacements, but rather from angular displacements. For inst nce, kine-
matic errors may result from the misalignment of gear shafts.

Figure 5 shows the axis of gear 2 rotation a-a in its ideal position.
Suppose that, due to an error of assembly, axis a-a 1is rotated about a
nonintersecting axis B-B. Such an error of assembly may be represented by

the vector as, which is directed along axis B-B, where the direction of

a8 corresponds to the direction of rotation by the right-hand rule.

16
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(2)

With the given vector As the displacement aq of contact point M may

be determined as follows:
(a) Vector as, directed along the axis B-B, is replaced by an equal vector
A8, which passes through the origin 02 and the vector-moment R x a§. Here

~

R s a position vector drawn from 02 to an arbitrary point on the line of

~

action of vector as (Fig. 5).

(b) The displacement Aq(z)

corresponding to A& may be represented by

Aq(z) = A6 X rz(M) + R x 85 = AS X (rgM) - R) (55)

—~ -~

A similar equation may be deveioped to determine the displacement of the contact
point M exerted by an angular erro- corresponding to gear 1.
With notations (54) the equation (53) for the determination of kinematic

errors may be represented as follows:

M)

(aw(z) X réM) + IAqQ) . n( =0 (56)

-~ -~

M) is the surface unit normal at the contact

where zAE = zAsgz) - EAﬂgl) and 2(
point M.

The location of the contact point M and the direction of the unit normal
n(M) change in the process of motion. A further simplification of equation
(56) results by assuming that in all positions the contacting tooth surfaces
have a common normal which passes through the contact point M and the pitch
point P. This is the fundamental law for uniform motion transmission. For
planar gears the pitch point P coincides with the point of tangency of the

pitch circles (gear centrodes). The pitch point for bevel gears is located on

the line of tangency of pitch cones. In both cases the surface unit normal n

~

17
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is collinear to PM and

5 = rép) +PM = rgp) + antM) (57)

~ ~ -~ -~

Equations (56) and (57) yield

(2) | SéP) + 1aq) . Mg (58)

~

because

= (89 </ x vyl ), n(M)) (59)

Application of equation (58) in place of equation (56) has the advantage

that the location of the pitch point may be considered as a constant (rgp)

-~

= const). However, the direction of the surface unit normal is a function of
- Three types of gears - involute (spur and helical) and Wildhaber-
Novikov - are exceptions to this statement. For these gears the unit normal
of the gear surfaces at their contact point does not change its direction.
Because of kinematic errors, the angular velocity ratio fluctuates as the
gear teeth pass through mesh. Figure 6 shows functions for two types of kine-
matic errors. The first is a piecewise, nonlinear, periodic function which

has a period that depends on the ratio

(60)

18
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minimum integral numbers with which the ratio mj, can be expressed. The
angle of rotation of gear 1 corresponding to the period of function Av(z)(¢l)
is equal to 2wa.

Such functions of kinematic errors are caused by (a) the eccentricity of gears ana
(b) the crossing of the theoretical axis with the axis of rotation of gears. (The
shortest distance between these axes rotates in the process of motion.)

The second type of function Ab(z)(bl), shown in Fig. 6(b), has a period of

of b1 = %1. This function is exerted by (a) errors in the generating process
1

of gear teeth and (b) errors of gear axis location which do not change in tne
process of ineshing, etc.
APPLICATION OF THEORY TO ECCENTRICITY OF INVOLUTE SPUR GEARS
(1) (2)

Figure 7 shows base circles of radii "y and LN for two involute

spur gears. The rotation centers of the gears are denoted 0(1) and 02.

(1)

If the centers of base circles Oi coincide with centers of roation O

(i = 1,2), and then vectors of gear eccentricity Asi = ETTTB; are zero. The
involute curves are in tangency at a point M of the line of action KL.

To model the meshing of gears with eccentricity, gears 1 and 2 are trans-
lated from their theoretical positions by BTTRS; = Afi (i =1,2). Now, the
center Oi will be offset from the center of rotation O(i). Because of
this displacement of the gears, the tangency of their involute curves is brok-
en: the curves will wither interfere with each other (intersect) or lose con-
tact. To bring the involute curves into the contact once again, it is suffic-

ient to rotate gear 2 by a small angle AQ(Z). According to equation (58)

the angle Av(z) may be determined with the equation
( (2) rép)) L (sey - se,) . n(M)) (61)

¢

-~ ~

The triple product results in (Fig. 7)
(D D) Q02 (P)

~

cos ¥, (62)

e e S
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where b, is the pressure angle.
Vectors of eccentricity 4€) and se, form angles 8 and By with vector

0[ 10{ ),

; these angles are measured in the direction of gear roatation (Fig. 7).
The dot products yield

aey - E(M) ae) sin(sy * ;) |
M) 2 ge, sin(v, - 8,) (63) ¥

-l

It results from equations (61) to (62) that

se, sin(B, + v ) + ae, sin(g - v_)
Ab(2) _ 1 1 0(2) 2 0 (64)
"b

where
: =r P cos ¥ (65)
! b ~ 2 0
is the radius of the base circle of gear 2.
The center 0, (i = 1,2) of the base circle rotates in the process of meshing;
i ogl) 0{2)

and are two instantaneous positions of this center (Fig. 8). Angles

By and 82 can be represented as follows:
By =Bg *91» By =8y * 9 (66)
where B1g and 820 correspond to the initial positions of centers 01 and 02,
with ¢1 = q)z = 0.
Equaticns (64) and (66) yield

' = 2 (67)
"
where
vp = (81g *¥,) 5 vy = (Byg - ¥)
For convenience, consider the kinematic error function to have zero magnitude at :i

9(1) = 9(2) = 0. Then, the kinematic error becomes |
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w o)) - wl?(0)

IY:) =
i ae) [sin(b1 + yl) - sin yl] . se, [sin(b2 + 72) - sin 12] (68)
- T "21 ey
b b
where
Moy =— =" 1"
(2) N
v Tp 2

Equation (68) represents the kinematic error of a gear train with two gears as
the sum cf two harmonics. The periods of these harmonics are equal to the
periods of complete revolutions of the gears.

Equation (68) may be made symmetric as follows:

Ae(2) _ Ael[sin(cp1 + yl) - sin 71] . Aez[sin(qa2 + yz) - sin 72]

m m
21 22
(1) (2)
rb rb
se.[sin(b, + y,) - sin y.]
=z 1 ! ‘. ! My (69)
i=1 rg‘l )

Here, My, = 1 and 9, =9 Myy

Equation (69) can be generalized for a train with n gears as follows:

n . .
Ae(n) -z ae;[sinfe; * v;) - sin v;] . (70)
i=1 (1) ni
b

where Ae(") is the resulting kinematic error of the gear train represented
as the angle of rotation of gear n (the output gear).

A complicated gear train is a combination of pairs of gears. The parameter

vy may be represented as

21
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R

y]-=a,~o+w

o

for the driving gear of the pair, and as

Yi = Bip ~ ¥

for the driven gear of the pair. For instance, for computational purposes, a
train of three gears must be replaced by two pairs of gears. The idler (inter-
mediate gear) is considered as the driven gear in the first pair, and as the
driving gear in the second pair.

Designate the kinematic error exerted by the eccentricity ae; of gear

number i as

se.[sin(e; + v.:) - sin v.]
20, = — ! ! ! (71)

1 rt()l)

where 86, is the error of the rotation angle 9;- The maximum

possible value of this error is

2 ae,
Y]

i,max
The kinematic error of the train may be represented as

Ae(") = iil so; m . (73)

Usually gear trains are applied for the reduction of angular velocities
and thus L js less than 1. It results from equation (73) that the last
gears of a train (numbers n, n - 1, n - 2} induce the largest part of the
resulting kinematic error Ae("). Therefore, the precision of these gears

must be higher than the others,




The largest value of the kinematic error function Ae(n) and its distri-
bution above and below the abscissa depend on the combination of parameters
Y; (i=1, 2, ..., n). Figure 9 shows the distribution of a function 86,

(vi) exerted by eccentricity of gear i of the train.

The resulting errors of a gear train may be compensated for in part, by
definite rules of assembly of gears with eccentricity. For instance, for gears
with tooth numbers N1 = N2 and equal eccentricities ae) = e, the
resulting kinematic error will be approximately zero if eccentricity vectors

ae, and se, (Fig. 7) are directed opposite each other.

-~

APPLICATION OF THEQRY TO ECCENTRICITY OF SPIRAL BEVEL GEARS

For spatial gears the word "eccentricity" is used to describe that the
geometric axis of a gear is parallel to, but does not coincide with, its axis
of rotation (Fig. 10). As the eccentric gear rotates its geometric axis gener-
ates a cylindrical surface of radius ae. The eccentricity vector ae is a
vector which rotates about the gear axis. The initial position of vector
ae (its position at the beginning of motion) is given by angle o (Fig. 10).

Figure 11 shows coordinate systems Sl(xl’Yl’Zl) and Sf(Xf,Yf,Zf),
which are rigidly connected to gear 1 and the frame, respectively, System
Sh is an auxiliary coordinate system, which is also rigidly connected to
the frame. Driving gear 1 rotates about axis Zh. The position of ae,
in coordinate system S1 is given by the angle e> which is made by
Agl and axis Xl. The current position of ASI in coordinate system Sf

(or Sp) is defined by the angle (¢1 + a,) and the matrix equality

1

(14 . (1)
laeg™ '] = [Lgp,] [aey™']
cos vp 0 sin " e cos(¢l + al)
= 0 1 0 -y sin(¢1 + al) (74)
23
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Here [Aeél)J is the matrix of vector 8e; in terms of its projections on

on the axes of coordinate system Sh. The 3 by 3 matrix [Lfn] trans-
forms elements of the column matrix Aeﬁl) to coordinate system Sf
from coordinate system Sh.
Matrix equality (74) yields
Aelcos(cpl + al)cos 0!
- ()4 . .
[aet ]l= -ae) sin(e) * ul) (75)
—Aelcos(«p1 + ul)sin 3|
The vector of eccentricity of the driven gear can be defined in a similar
way. Figure 12 shows coordinate systems 52 and Sf rigidly connected to

gear 2 and the frame, respectively. The auxilliary coordinate system Sp is

also rigialy connected to the frame,

Vector Aeéz) is represented by matrix equalities

(2)- _ (2)
[ae;™’] = [pr] [Aep ]
[cos A\ 0 ~sin v, se, cos{e, * 02)
= 0 1 0 se, sin(cp2 + u2) (76)
sin Y, 0 cos v, 0

which after matrix multiplication gives

ae, cos(v2 + a2) cos v,
(2)4 _ :
[Aef 1= ae, swn(¢2 + a2) (77)
se, cos(v2 + 02) sin Y5
Kinematic errors induced by gear eccentricities may now be found by applying

Equation (58) as follows:
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f

ot o (7

(2)

Here Aegl) and Aeéz) are given by matrices (75) and (77); vector b9

(Fig. 12) is represented by the matrix

(00887 = [ ) [a0l?))

[cos vy, 0 -sin v, 0
0 1 0 0
sin D 0 cos D 29,
F¥A¢2 siny2

0

A¢2 cos Yo

Vector Péz) represents the position vector of the contact point which
belongs to the 1ine of action and ne represents the common unit normal of the
gear surfaces at their point of tangency.

Equations (78) and {79) yield

n_ kI +n k + n_ Lae
X Aex y Aey . A 7

A9, =
2 -y Cos Y, + (x cos Y, + 2z sin yz)ny - y sin Yy nZ

_ aell) (2) _
where ZAex = ae "' - se ", ery =

the subscript f was dropped.

Projections ny and nZ of the surface unit normal E’ and coordinates
x, ¥, and z of the contact point change in the process of motion. But since the
changes in these variables are relatively small, they may be neglected (Fig. 13).

sin ¢, ig * cos c. (cos 8 ﬂf + sin g Ef)
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Equations (80) and (81) yield 1

woley) = Aley) (82) |
L sin Y, Cos ¥ COS B :

where
A(vl) =3 sin (¢1 + ul) + b1 cos (vl + al) +
ay sin (¢2 + u2) *+ b, cos (92 + a) 3

aj = -aej COS ¥_ COS 8 H

a, = -ae, COS ¥ _ COS B

b1 = Ael(cos " sin Ve - sin y; cos V. sin 8)

b, = -ae,(cos v, sin ¥_ *+ sin y, cos ¥_ sin 8)
i

=9
2 1 N,

=
shchieincaaniity

It is concluded from the form of equation (82) that kinematic errors in-
duced by the eccentricity of spiral-bevel gears may be represented as the sum
of four harmonics: the period of two harmonics coincides with the period of
revolution of gear 1; the period of the other two coincides with the period of ' 3
revolution of gear 2.

The function A¢2(¢1) represented by equation (82) is a smoothed,
continuous function which serves as a first approximation. In reality the true
function vz(ol) breaks as different sets of teeth come into mesh. This
break can be discovered if A¢2(¢1) is determined by equation (80).

GEAR TRAIN VIBRATION AND NOISE MEASUREMENT

To illustrate the principles discussed on the subject of gear train preci-

sion, Figs. 14 and 15 are used. These figures show some frequency spectrum

measurements made on a helicopter transmission running in a test stand [7].

The transmission had a spiral-bevel input stage with 19 teeth on the pinion
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and 71 teeth on the gear. The pinion was turning at 6200 rpm and the output

shaft at 355.5 rpm. The output stage was a spur planetary arrangement wilh a

27-tooth sun, 3 planet gears, each with 35 teeth and a YY-tooth ring gear which

i
was splined to the transmission housing. An accelerometer was mounted on the ;’
case immediately outside the spline. ‘

Figure 14 shows a broadband frequency spectrum measurement of the vibra-
tion signal. The spur mesh frequency was 583 Hz and the spiral bevel mesh
frequency was 1963 Hz. The spiral-bevel vibration signature was much stronger
than the spur signature. This indicates that the meshing accuracy was better
o for the spur mesh than for the spiral-bevel mesh. There are also other peaks :

in the spectrum at multiples of the fundamental frequencies of 1963 Hz and 583 3
Hz. These other peaks are the higher harmonics due to the noise and vibration
pulsations as the teeth mesh being different from the pure sinusoidal shape as
shown in Fig. 9.

Figure 15, an expanded region of the autospectrum plot given in Fig. 14,
shows many peaks that are symmetrically located about tne spur gear mesh fun-
damental frequency peak at 583 Hz. These peaks locate the sideband frequen~ i

cies which are due to sources of modulation in the time dependent vibration

waveform. Each source of modulation may produce one pair of sidebands if it }'
is a harmonic modulator. if nonharmonic, the side bands will repeat many

times, as in the case in Fig. 15.

SUMMARY OF RESULTS i
Kinematic precision is affected by errors that are the result of either
intentional adjustments or accidental defects in the manufacturing and assem-

bly of gear trains. A general method for the determination of kinematic pre-

cision of gear trains has been explained. The general method is based on the

exact kinematic relations for the contact point motions of the gear tooth sur-




faces under the influence of errors. An approximate method was also explained.

Exampie appliications of the general and approximate methods were demonstra-

ted for gear trains consisting of involute (spur and helical) gears, circular
arc (Wildhaber-Novikov) gears, and spiral-bevel gears. Gear noise measurements
from a helicopter transmission were presented and discussed with relation to
the kinematic precision theory. The following results were obtained:

1. The exact numerical iterative procedure for finding kinematic errors,

Abz, is as follows: From equation (20) find
)
89, =9,(0), 8Q) - 9,(e;)

where the angles 9, and ¢g have been determined from an iterative
solution of the nonlinear algebraic system of five equations, which are separ-

able into two systems of two and three equations each as follows:

Fi(‘?la ‘92) =0, 1=1,2

r A - Kl(uliels¢19u2962!¢2’AQ) = 0
< Hl - K2(U1,91,¢1,U2992’¢2’49) =0
\HZ - K3(U1,91,01,U2;92ﬂ’2:AQ) =0

where A, Hl’ H2, and AQ are given values and vg is determined by solving with
; AQ = 0, whereas 95 is determined by the full solution of the five equations.

2. The approximate equation for kinematic error AQ(Z) is

(Ab(z) X rép) x Saq) ° n(M) =0

-~

| where rgp) is the radius vector to the pitch boint, n(M) is the surface normal

vector at the contact point M, and Iaq is the sum of known error vectors.
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3. Application of the formulas showed that Wildhaber-Novikov gears are sen-
sitive to any errors which cause changes in the center distance. A formula for
the location of the gear-tooth contact point was given.

4, It was found that for a pair of spur gears the kinematic error function
due to eccentricities is a sum of two simple harmonics. For a multistage speed
reducer, it was concluded that accuracy in the final stages has the most impact
on kinematic error. For gears with approximately equal known eccentricities,
the kinematic error may be compensated for by directing the eccentricities
opposite one another.

5. For a pair of spiral-bevel gears, the kinematic error function due to

eccentricities is a sum of four harmonics.
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Figure 15. - Narrow band frequency spectrum showing sidebands
around the spur mesh frequency.
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